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Gaussian Mixture Models

Gaussian Mixture Models can be used to model complex multimodal distributions 
while still maintaining the theoretical and computational benefits of Gaussian 
Models.
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The Model

We will assume that our data arrives from K Gaussians, each with their own means 
!" and covariances Σ" for 1 ≤ & ≤ ' such that,

( )" = +
",-

.
/"0()"|!", Σ")

Where /" are the mixing coefficients and 0 )" !", Σ" is the probability that a 
Gaussian with mean !" and covariance matrix Σ" takes value )"
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Expectation Maximization Algorithm

The Expectation Maximization (EM) Algorithm can be used to iteratively find the 
Maximum Likelihood Estimate of parameters in statistical models with latent 
variables.

In our case since each observation randomly picked from a cluster ! with probability 
"#, the latent variable $ will indicate which cluster a particular observation has 
come from (but is not directly measured)
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EM Algorithm: E-Step

! "∗, " = ∑'()* ∑+(), ℎ'+ ln 0' + ln2 3'| 5+, Σ+

Which is the Expectation of the Complete Log Likelihood and needs to be 
maximized in the M-Step. ℎ'+ is the probability that the observation 3' came from 

cluster 7 and is given by:

ℎ'+ =
0+2(3'|5+, Σ+)

∑:(), 0:2 3' 5:, Σ:)
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EM Algorithm: M-Step

On maximizing ! computed in the E-Step, we get the following update rules:

"# $ + 1 = ∑)*+, ℎ)#($)0)
∑)*+, ℎ)# $

Σ# $ + 1 = ∑)*+, ℎ)#($)(0) − "#)(0) − "#)3
∑)*+, ℎ)# $

4# $ + 1 = ∑)*+, ℎ)# $
5

May 2020 EE5111 Project Report 5



Deterministic Anti-Annealing Variant 
of the EM Algorithm (DAEM)

This variant of the EM algorithm can help speed up the rate of convergence and 
also prevent it from getting stuck in local maxima. The DAEM algorithm modifies 
ℎ"# from the E-Step as:

ℎ"# =
%#&(("|*#, Σ#)

.

∑0123 %0& (" *0, Σ0) .

Where 4 is the scheduling parameter and will be swept from a low value to 4567
which is greater than 1 and then brought back down to 1
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Performance in Simulation
Fast convergence of DAEM if 
clusters are overlapping and 
are heavily unbalanced. 

Sample points = 1000

DAEM performs a better and 
robust search in given 
parameter space.



Performance in Simulation

Separating 4 different Bivariate Gaussian Clusters, sample size = 1000 
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Performance in Simulation

May 2020 EE5111 Project Report 9

Separating 4 different 
Bivariate Gaussian Clusters, 

sample size = 1000 



Application of DAEM:
Modelling Non-Gaussian Noise

Non-Gaussian noise can be modelled as a finite mixture of Gaussian pdfs. This 
performs far better than conventional methods in the case of additive Non-
Gaussian noise. Here we have modelled a Cauchy distribution using GMMs

KL Divergence for DAEM = 0.3468 KL Divergence for EM = 0.4349
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Modelling the Pareto Distribution

KL Divergence for DAEM =  0.46 KL Divergence for EM =  0.62
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Channel Estimation with Non-Gaussian Noise

! = #$ + &
The above equation relates the received signal ! with the channel vector $ in the 
presence of complex non-Gaussian Noise.
& is hence modelled as a K-component GMM with means '( and variances )(2 for 
1 ≤ , ≤ -
# is given by:

# = ./
. = diag(56, 58, … , 5:) where 5( is the ith pilot symbol.
/ is the DFT Matrix.
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Update Rules

! " + 1 = &'(& )*&'(+

,-. " + 1 = + − &! 0 12- − 13-13-
0 + − &!

4- " + 1 = 13-
0 5 − &6

7- " + 1 =
∑9:*; ℎ9-
=
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ℎ9- is the probability that an observation >9
comes from cluster ? and is defined as before in 
conventional EM.

3- ≔ (ℎ*-, ℎ.-, …, ℎ;-) '

13- ≔
3C

∑DEF
G HDC

12- ≔ diag(Mℎ*-, Mℎ.-, … , Mℎ;-)

( ∶= ∑-:*Q 10C)13C3C
R

SC
T(U)



Simulation Details
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! " = $
% & " + () " * "

* " = +,-./0

" ∈ 0, 1, … , 6 − 1

& " , ) " ~9(0, 0.5)

Channel model generated using: Channel is assumed to have L = 32 
taps and there are N = 128 pilot 
symbols.

Process noise added is assumed to 
be a zero-mean complex Cauchy RV 
with scale parameter = = 0.1.  

The GMM is assumed to have 4 
clusters.



Simulation Results
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SE = 0.4072 SE = 0.0324



Simulation Results
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SE = 3.7392 SE = 0.0133

Works well even with unknown non-zero mean. True mean of noise = 4.



Simulation Results
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SE = 3.10 SE = 0.026
Robust to randomly added Brownian noise on top of Cauchy Noise (PSD proportional to 1/f2)

N = 256


