
Indian Institute of Technology, Madras

Department of Electrical Engineering

A Compressed Sensing Approach for Denoising
Audio and Speech Signals

Convex Optimization - EE5121 - End Semester Paper

Name: Vallabh Ramakanth

Roll No.: EE17B068

Date: July 26, 2020

Main Reference: Dalei Wu, Wei-Ping Zhu and M.N.S. Swamy.
A Compressive Sensing Method for Noise Reduction of Speech
and Audio Signals.
2011 IEEE 54th International Midwest Symposium on Cir-
cuits and Systems (MWSCAS).

Contributions: This paper contributes by:

– Modelling the optimisation problem differently to avoid
weighing of L2 and L1 objectives.

– Working with sparsity in Fourier (STFT) domain instead
of Daubechies Transform domain.

– Implementing the algorithm on voice signals with higher
sampling frequency.



1 Brief on Compressed Sensing

The classical Nyquist sampling theorem states that every signal with a maximum N frequency components can
be perfectly recovered with a sampling rate of at least 2N. Compressed Sensing (CS) is a method of almost
perfect signal recovery of an undersampled signal provided that the signal is k−sparse in some domain. This
has great consequences in many fields as a large variety of real-life signals are sparse in some transform domain.
CS also allows systems to sample at a rate lower than the Nyquist sampling limit 2N to recover sparse signals
having frequency components larger than N (as in [1]).

However, the theoretical framework of CS relies on certain properties of the measurement matrix and the
sparsity of the signal to be estimated. They are as follows (as in [1]):

1. k−sparsity of signal space: The signal space S holds k−sparsity if ∀x ∈ S, ||x||0 ≤ k.

2. Restricted Isometry Property (RIP): The measurement matrix A should satisfy RIP, i.e., for mea-
surement matrix Am×n, k << m < n, ∃δk > 0 such that ∀x

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22

Then CS theory tells us that the vector can be almost perfectly recovered from

x∗ = argminz||z||1 subject to Az = y

where y is the true m length measured vector and

||x− x∗||2 ≤ C
σk(x)1√

k

where x is the signal to be estimated, C > 0 is some constant and σk(x)1 = infs∈S ||x−s||1 is the best k−sparse
approximation of x.
One good family of measurement matrices which satisfy the above mentioned property are Random Partial
Fourier Matrices (RFPMs) and we will only deal with them.

2 Voice as a Sparse Signal

Human voice and speech is very dynamic, comprising frequencies, amplitudes and tones which vary largely with
time. The assumption made is that the frequency content of speech is stationary in a frame of time length
≈ 100ms. In a given frame, we hypothesise that the frequency content is stationary and there are only k
dominant frequencies.
Hence, the human voice is treated as a k−sparse vector in the frequency domain.

v(t)
sampling−−−−−→ v[n]

FFT−−−→ V[j]

V[j] is the n length frequency vector which is approximately k−sparse. On the contrary, noise is not sparse in
frequency domain. Hence, getting the best sparse representation of a noisy audio clip using CS can facilitate
denoising the signal.

3 Modelling of the Problem

Let s be the noisy n length audio sample of the frame. y = Ms is the “measured vector” where Mm×n is a
matrix which randomly chooses rows (in order) in s.

M =


0 . . . 1 . . . 0
0 . . . 0 1 . . .
...

. . .
...

0 . . . 0 . . . 1


m×n

Let x ∈ Cn(≡ R2n) be the k−sparse frequency vector.
Then

s = Fx + ε (1)

y = MFx +Mε = Ax +Mε (2)

1



where F is the full inverse Fourier matrix ε is the noise term. A = MF is the measurement matrix.
Therefore,

||y −Ax||22 ≤ ||Mε||22 ≤ ||ε||22 (3)

If we define γ as the output signal to noise ratio, then

γ =
||Fx||22
||ε||22

=
1

n

||x||22
||ε||22

(∵ FHF =
1

n
I)

γ could also be considered as a “fitting parameter”. Constraint (3) becomes

yTy − 2yTAx + xH(AHA)x− xHx

nγ
≤ 0 (4)

This is a quadratic constraint. From CS method, our required vector is the solution of the convex optimisation
problem:

min
x∈Cn(≡R2n)

||x||1

subject to yTy − 2yTAx + xH(AHA)x− xHx

nγ
≤ 0

We now need to show that Slater’s Rule holds so that we can conclude strong duality of the problem.
Consider

xH(AHA)x = xH(FHMTMF )x ≤ xH(FHF )x =
xHx

n
(5)

=⇒ xH(AHA)x− xHx

γ
≤ xHx

(
1

n
− 1

nγ

)
= c xHx (6)

=⇒ c

(
yTy

c
− 2

(
AHy

c

)H
x− xHx

)
= c

(∣∣∣∣∣∣∣∣x− AHy

c

∣∣∣∣∣∣∣∣2
2

+
1

c
yT
(
Im −

AAH

c

)
y

)
(7)

Now, if we show that c > 0 and Im − AAH

n ≺ 0, we would have successfully shown that ∃x ∈ relint(Cn) = Cn
which satisfies the quadratic constraint (4). So,

AAH = MFFHMT =
MMT

n
=
Im
n

=⇒ Im −
AAH

c
= Im

(
1− 1

nc

)
We have shown that we are guaranteed that ∃x ∈ relint(Cn) = Cn which satisfies constraint (4) if c > 0 and
1− 1

nc < 0. The problem is guaranteed to satisfy Slater’s Rule and is convex ∀y if we choose γ > 1.
Hence, the dual and the primal problem have the same optimal value as strong duality is valid. The dual
problem is as follows.

max
λ∈R

inf
x∈Cn

||x||1 + λ

(
yTy − 2yTAx + xH(AHA)x− xHx

nγ

)
subject to λ ≥ 0

This can be solved using simultaneous gradient descent (for x) and gradient ascent (for λ) (as described in [4]).
Algorithm 1 is used to achieve the optimal solution.

Note 1: Since we are dealing with functions which map Cn → R, it is essentially a map from R2n → R,
and we can define a gradient of the function with respect to x using Wirtinger Calculus.

Note 2: s is a real vector, and hence the DFT vector will be conjugate symmetric and hence we can reduce the
search space from Cn to Cceil(n/2) and tightly constrain the system. However for simplicity of implementation
and to maintain convexity of the problem, we will not truncate x.
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Note 3: For numerical implementation of gradient descent, we can define a function (as in [5])

shrink(x) : Cn → Cn

shrink(x)i =

{ xi

|xi| : |xi| > η

0 : |xi| ≤ η

where η → 0. This gives us the gradient of ||x||1 in Cn \ {x|xi = 0}. However, it is one of the sub-gradients[6]
of ||x||1 and will work in the gradient descent algorithm to move towards the optimal point. We set η to 10−9.

At the end of the algorithm, a threshold for sparsity is added, i.e., xij is made 0 if |xij | < 0.1.

Algorithm 1 Simultaneous Gradient Descent and Ascent with Backtracking Line Search (γ = 104 or 40dB)

δ := 10−8 (tolerance)
α := 0.1 (line search parameter)
β := 0.5 (line search parameter)

f0(x, λ) := ||x||1 + λ
(
||y −Ax||22 − 1

nγ ||x||
2
2

)
λ0 ← 0
x0 ← FFT of frame
repeat

∆xi ← ∇xi
f0 = shrink(xi) + λi((2A

H(y +Axi))− 2
nγxi)

tx ← 1
repeat
tx ← βtx

until f0(xi + tx∆xi, λi) < f0(xi, λi)− αtx||∆xi||22
xi+1 ← xi − tx∆xi
∆λi ← ∇λi

f0 = ||y −Axi+1||22 − 1
nγ ||xi+1||22

tλ ← 1
repeat
tλ ← βtλ

until f0(xi+1, λi + tλ∆λi) > f0(xi+1, λi) + αtλ∆λ2i
if λi + tλ∆λi ≥ 0 then
λi+1 ← λi + tλ∆λi

else
λi+1 ← λi

end if
until |xi+1,j − xi,j | < δ or i = 1000 (from KKT conditions, if x is the minimum, then λ is the maximum)

4 Implementation

The above denoising technique was tested using the Python programming language. The audio clips are single
channel 16-bit .wav files with sampling frequency 16kHz. The frame size chosen was n = 1024 and the sampling
size was m = 256.

Following are snippets of the code implemented in python. To prevent full matrix multiplication and increase
speed of the program, array slicing and the FFT algorithm were used instead of sampling matrices and the
complete Fourier matrix.

# lm ==> lagrange multiplier

# ii ==> the m indices to be sampled

def f(x, y, ii, lm):

# Objective function

xt = np.fft.ifft(x)

vec = xt[ii]

T1 = np.sum((np.abs(vec - y))**2)

T2 = np.sum(np.abs(x)**2)/n/snr

T3 = np.sum(np.abs(x))

return lm*(T1 - T2) + T3

def grad_f_x(x, y, ii, lm):

# Gradient of objective wrt complex x

xt = np.fft.ifft(x)

vec = xt[ii]
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Figure 1: Implementation Flowchart

res = vec - y

vec = np.zeros(x.shape , dtype=np.complex128)

vec[ii] = res

vec = np.fft.fft(vec)/n

return lm*(2* vec - (2/n/snr)*x) + shrink(x)

def grad_f_lm(x, y, ii):

# Gradient of objective wrt Lagrange multiplier

xt = np.fft.ifft(x)

vec = xt[ii]

T1 = np.sum((np.abs(vec - y))**2)

T2 = np.sum(np.abs(x)**2)/n/snr

return (T1 - T2)

5 Results

Audio clips from the TIMIT[7] dataset were chosen to run tests on them. Different synthetic noise samples were
added to the audio signals to test out the algorithm. The noises that were tested are primarily Stationary White
Gaussian Noise (SWGN), Non-Stationary White Gaussian Noise (NSWGN) and random Cauchy Noise (digital
noise sampled from a stationary Cauchy distribution). In all the following places, input SNR is considered as
the ratio of average signal power to average noise power.

On running the algorithm we find that the major drawback of this algorithm is that the voice is made to
sound robotic. This is an artefact of the algorithm as it tries to find the best sparse representation of the audio
clip and in turn loses some of the more intricate details of human speech.

In figure 2, we see from the audio waveforms that the algorithm has managed to remove the additive white
noise quite well.

In figure 3, we see that the denoising algorithm is mildly robust to additive digital Cauchy noise.
For the Test-2 audio clip, non-stationary white Gaussian noise was added and we see from figure 4 that the
algorithm works well with it too.
Another side effect of the algorithm is a compressed representation of the audio signal which can be exploited
for other applications. On checking the output frequency vectors contained a maximum of 64 non zero elements,
which shows tells us that there is a compression of about 1024/64 = 32 for each frame. However, information
about speech is lost.
The source code along with the audio test cases and results can be found here.

6 Further Scope

• One of the major disadvantages of using this method is that the sparsity reduces the “quality” and the
feel of human-like voice. We can try mitigating it by estimating higher harmonic contents in the frame
after the sparsity constraint.

• One major advantage of this method is the ∼ 32× compression factor achieved. One can try to exploit
this for robust coding and denoising of voice signals.
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(a) Original Clip without noise (b) Output of algorithm with added SWGN

Figure 2: Results with Test-1 Audio clip

(a) Average SNR of input: 6.0dB (a) Average SNR of input: -3.0dB

Figure 3: Results with Test-1 and added Cauchy Noise

(a) Original Clip without noise (b) Output of algorithm with added NSWGN

Figure 4: Results with Test-2 Audio clip
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