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Definitions/Notation
! is a transition probability map or channel.

!" is the equivalent channel when ! is 
used # times independently.

!" $" %" ='
()*

"
!($(|%()

.(!) is the symmetric capacity of the channel. 
Here, % is uniformly distributed over {0, 1}. 
This parameter is strongly tied to the rate of 
transmission. 0 ≤ . ! ≤ 1.

6(!) is the Bhattacharya parameter of the 
channel. It measures the “reliability” of the 
channel. 0 ≤ 6 ! ≤ 1.

$" ≔ $*" ≔ $*, $8, … , $" ,
%" ≔ %*" ≔ %*, %8, … , %"
%:; ≔ (%:, … , %;)



Channel Polarization
• Use ! " # independently $ times and artificially manufacture a new set of 

channels !%(') which are polarized, i.e., )(!%(')) goes to either 0 or 1, ∀+
asymptotically. 

… …
Discrete Memoryless 

Channel

WN(yN|xN)

Linear 
Transformation …

u1 u2 uN-1 uN x1 x2 xN-1 xN
y1 y2 yN-1 yN

• Channel polarization can visualized by breaking down the entire operation to two phases
1. Channel Combining
2. Channel Splitting
• For decoding, we look at
3. Successive Cancellation 

Used N timesSmart manipulations



Channel Polarization

Consider the following definition of a channel                                 , !" #" $" by using independent copies 
of !(#|$). ( = 2+. 

!, #, -,) = ! #, -,

!. #,, #. -,, -.) = !, #, -,⨁-. !, #. -.

!1 #,, #., #2, #1 -,, -., -2, -1) = !. #., #, -,⨁-., -2⨁-1 !. #2, #1 -., -1
…

1. Channel Combining:



Channel Polarization

Recursive Construction of !"

…

1. Channel Combining:

Reverse shuffle operation: Group all odd 
terms in the first half and all even terms in 

the second half sequentially.



Channel Polarization
2. Channel Splitting:
We now split !" channel into a set of individual single bit input  channels                                                            
defined as  

Discrete Memoryless 
Channel

!"#

Summed over all 
“unknown” bits

Input (single bit) Output

$# %&, %(, … , %", $&, $(, … , $#*&

What we will try to do:

Given %&, %(, … , %", $&, $(, … , $#*&, try estimating $#.
We will prove that this channel is polarized, i.e., its capacity is very close to either 1 or 0.  



Polar codes: Intuition

… …

Transmission with coding

Discrete Memoryless 
Channel

WN(yN|xN)
Encoder 

(Linear Transformation)

≡

… …

…

Channel W(1)
N

Channel W(2)
N

Channel W(i)
N

Channel W(N)
N

… …
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u1 u2

uN-1

uN

u2 uN-1 uN

u1

u1 u2 uk-1 uk x1 x2 xn-1 xn
y1 y2 yn-1 yn

Effect of channel polarization

Channel is used N times (N large)

Asymptotically

Output

Use these for message!"

!"#

Frozen bits



Decoding
3. Successive Cancellation Decoder



Proofs



Single step transformation of !,! to !#,!##

Definition: 
Consider two independent copies of channel !. The following is a single step transformation

Iff ∀&', &( ∈ *, +', +( ∈ ,

!# +', +( &' = 1
20

123
! +' &' + &(′ !(+(|&(′)

!## +', +(, &' &( = 1
2! +' &' + &( !(+(|&()

From this definition, we see !,! → !( ' ,!( (

Can be generalized to !:; ,!:; → !(:(;<' ,!(:(; (L1)



L1. Recursive Construction of !"#

i.e., !"# ,!"# → !&"&#'( ,!&"&#



Proof:

If !,! → !′,!′′ , then

Let %&, %' be the inputs to the channels. Define (& = %& + %' and (' = %'. 
We send (&, (' , linear transformation of input vector %&, %' , through the channel !'

+ !, = + -&, -'; %&
+ !,, = + -&, -', %&; %' = + %&; %' + + -&, -'; %'|%& = + -&, -'; %'|%&
+ !, + + !,, = + -&, -'; %& + + -&, -'; %' %& = + -&, -'; %&, %' = + -&, -'; (&, ('
∴, + !, + + !,, = 2+(!)

Also, + !,, = + -&, -', %&; %' = + -'; %' + + -&, %&; %' -' ≥ + !
⇒ + !, ≤ +(!) !, 7&, 7' 8& = 1

2:
;<=
! 7& 8& + 8'′ !(7'|8'′)

!,, 7&, 7', 8& 8' = 1
2! 7& 8& + 8' !(7'|8')

Chain Rule of Mutual Information

L2. Channel Parameters after Single step transforms



Proof:

If !,! → !′,!′′ , then

% !&& = (
)*,)+,,*

!&& -., -/, 0. 0 !&& -., -/, 0. 1 = 1
2 (
)*,)+,,*

! -. 0. ! -/ 0 ! -. 0. + 1 ! -/ 1)

= 1
2 (
)*,,*

! -. 0. ! -. 0. + 1 (
)+

! -/ 0 ! -/ 1)

= 1
2× 2% ! × % !

= % ! /

∴ % !&& ≤ % ! !& -., -/ 0. = 1
2(

,+9
! -. 0. + 0/′ !(-/|0/′)

!&& -., -/, 0. 0/ = 1
2! -. 0. + 0/ !(-/|0/)

Second Equality can be shown to be true with simple algebraic identities.
Third inequality can be shown by exploiting the convex property of Z(W) 
and Minkowski’s Inequality.

L2. Channel Parameters after Single step transforms

First Equality



Summary (Till Now) 

Using L1 and L2, we can summarize 

!"# ,!"# → !&"&#'( ,!&"&#

) !&"&#'( + ) !&"&# = 2) !"#

) !&"&#'( ≤ ) !"# ≤ ) !&"&#'(

. !&"&# = . !"#
&

. !&"&#'( + . !&"&# ≤ 2. !"#

Binary/Power of 2 
recursion

A

B

C



Since ! = 2$,&'( = &)*,)+,…,)-where

. = 1 +1
234

$56
7222

&'( ,&'( → &9'9(56 ,&9'9(
: &)*…)- → 1

: &)*…)- → 0



Proof:

T1. Channel Polarization
For any B-DMC !, the channels !

"

# polarize, i.e., for any $ > 0, as ' = 2
* goes to ∞, a subset of indices , ⊂

1,… , ' , 1 ∈ ,, j ∈ ,4, 5 !
"

#

∈ (1 − $, 1] and 5 !
"

9

∈ 0, $ with :
"

= 5(!). 

Define <
* *=>

to be an i.i.d. Bernoulli random process, such that <
*
= 0 or 1 with equal probability ?

@

.
Then, !

A
B
A
C
…A

D

is a random process defined on the tree in the previous figure, with !
>
= !, the true B-DMC.

Moreover, 5
*
≜ 5(!

A
B
A
C
…A

D

) and F
*
≜ F(!

A
B
A
C
…A

D

) are defined random processes. 

G 5
*
<
*H?

= G 5 !
A
B
A
C
…A

D

<
*H?

=

1

2

5 !
A
B
A
C
…A

DIC
>
+

1

2

5 !
A
B
A
C
…A

DIC
?
= 5 !

A
B
A
C
…A

DIC

because 5 !
@"

@#H?

+ 5 !
@"

@#

= 25 !
"

#

Hence 5
*

is a bounded martingale process, as 0 ≤ 5
*
≤ 1.

All moments of 5
*

exist!

From Martingale convergence, we have that 5
L

is a well defined random variable and G|5
L
− 5

*
| < ∞.



Proof:

T1. Channel Polarization
For any B-DMC !, the channels !"

# polarize, i.e., for any $ > 0, as ' = 2* goes to ∞, a subset of indices , ⊂

1,… , ' , 1 ∈ ,, j ∈ ,4, 5 !"
# ∈ (1 − $, 1] and 5 !"

9 ∈ 0, $ with :
"
= 5(!). 

< =* >
*?@ = < = !ABAC…AD >*?@ =

1

2
= !ABAC…ADECF +

1

2
= !ABAC…ADEC@ ≤ = !ABAC…ADEC

because = !I"
I#?@ + = !I"

I# ≤ 2= !"
# .

Hence =* is a bounded supermartingale process, as 0 ≤ =* ≤ 1.
All moments of =* exist!

From Martingale convergence, we have that =J is a well defined random variable and <|=J| < ∞.
Since =* = ∑#O@

* (=#−=#?@), and as <|=*| converges, we have < =*P@ − =* → 0.

But =*P@ is = !ABAC…ADF = =*
I with probability @

I
because = !I"

I# = = !"
# I

. 

Hence, < =*P@ − =* ≥
@

I
< =*

I − =* =
@

I
< =* 1 − =* .



Proof:

T1. Channel Polarization
For any B-DMC !, the channels !"

# polarize, i.e., for any $ > 0, as ' = 2* goes to ∞, a subset of indices , ⊂

1,… , ' , 1 ∈ ,, j ∈ ,4, 5 !"
# ∈ (1 − $, 1] and 5 !"

9 ∈ 0, $ with :
"
= 5(!). 

Hence, < =*>? − =* ≥ ?
A
< |=*A − =*| =

?
A
< |=*(1 − =*)| .

As < =*>? − =* → 0, we also have < |=*(1 − =*)| → 0, which implies Z* converges to either 0 or 1 almost surely!

As =F = 0 or 1, we have 5F = 1 − =F. (Can see intuitively that = ! = 0 gives 5 ! = 1 and vice-versa)

The above result is true whenever = ! = 0 or 1. 

But since 5* is a martingale, < 5F = 5G which immediately gives us 

H 5F = 1 = 5G = 5(!) and H 5F = 0 = 1 − 5G



Proof:

T2. Channel Polarization
For any B-DMC !, and any fixed rate " < $(!), there exists a sequence of sets '( ⊆ 1,… , - , - = 20 such 
that |'(| ≥ -" and 3 !(

4 ≤ 6 -7
8
9 ∀; ∈ '(. 

From the same setting as earlier, we have 

30=> ≤ 30?, @0 = 1 as 3 !?(
?4 = 3 !(

4 ?

30=> ≤ 230 − 30? ≤ 230, @0 = 0 as 3 !?(
?47> ≤ 23 !(

4 − 3 !(
4 ?

For parameters 2 ≥ E ≥ 0, F ≥ 0
GH E ≜ {K ∈ Ω; 34 ≤ E, ∀; ≥ F}

Then for K ∈ GH(E) and ; ≥ F, we have 
34=>
34

≤ O
2, @0 = 0
E, @0 = 1

This implies 30 ≤ E207H ∏4QH=>
0 R

?

ST
= E207H

R

?

∑TVWXY
Z ST

for [ > F



Proof:

T2. Channel Polarization
For any B-DMC !, and any fixed rate " < $(!), there exists a sequence of sets '( ⊆ 1,… , - , - = 20 such 
that |'(| ≥ -" and 3 !(

4 ≤ 6 -7
8
9 ∀; ∈ '(. 

For = > ? ≥ 0 and 0 < A < 1/2, define,

CD,0 A ≜ F ∈ Ω: I
4JDKL

0

M4 ≥
1

2
− A = −?

Then 

30(F) ≤ O 2
L
P KQ O

L
P 7Q

07D

, F ∈ RD O ∩ CD,0 A
Substitute AT = 1/20 and OT = 27U to get 

30(F) ≤ 27U 7
V 07D

U , F ∈ RD OT ∩ CD,0 AT

We need to show that for a given ?, =, RD OT ∩ CD,0 AT occurs with high probability.



Proof:

T2. Channel Polarization
For any B-DMC !, and any fixed rate " < $(!), there exists a sequence of sets '( ⊆ 1,… , - , - = 20 such 
that |'(| ≥ -" and 3 !(

4 ≤ 6 -7 8
9 ∀; ∈ '(. 

First consider => ?@ .
As seen from T1, B 3C = 0 = $@, which implies that E0 ≔ {30 ≤ ?@}, 3C = 0 ⊆ ∪0J> E0 for large enough K, and 
hence B ∪0J> E0 ≥ $@ −

M
N
.

=>O ?@ = ∪0J>O E0, and from continuity of probability,

B =>O ?@ = B ∪0J>O E0 ≥ $@ −
P
2
, K@ = K@(?@, P)

Now consider Q>,0 R .

B Q>,0S R@ = B T
4U>VW

0

X4 <
1
2
− R@ Y − K = B −Z T

4U>VW

0

X4 > −Z
1
2
− R@ Y − K

≤ 2\
W
N 7]O 07> ^ 27\_` 07> =

2\
W
N 7]O + 27\

W
NV]O

2

07>

B Q>,0S R@ ≤ 2
7 07> W7b W

N7]O

Chernoff Bound



Proof:

T2. Channel Polarization
For any B-DMC !, and any fixed rate " < $(!), there exists a sequence of sets '( ⊆ 1,… , - , - = 20 such 
that |'(| ≥ -" and 3 !(

4 ≤ 6 -7 8
9 ∀; ∈ '(. 

= >?@
A BC ≤ 1 − $C +

F
2 , GC = GC(BC, F)

= H?,0A IC ≤ 2
7 07? J7K J

L7M@

We can choose a finite NC GC, IC, F such that the RHS of the above inequality becomes at most O
L
. Hence, from union 

bound, ∀N > NC
= >?@

A BC ∪ H?@,0
A IC ≤ 1 − $C + F

= >?@ BC ∩ H?@,0 IC ≥ $C − F
Therefore 

30(T) ≤ 27U 7
V 07?@

U = W27
V0
U , T ∈ >?C BC ∩ H?@,0 IC , ∀N > NC



Proof:

T2. Channel Polarization
For any B-DMC !, and any fixed rate " < $(!), there exists a sequence of sets '( ⊆ 1,… , - , - = 20 such 
that |'(| ≥ -" and 3 !(

4 ≤ 6 -7 8
9 ∀; ∈ '(. 

Define  =0 = >: 30 ≤ @27
8A
9 , then immediately BCD ED ∩ GCH,0 ID ⊆ =0 ∀J > JD

L =0 ≥ $ − N = " ∀J > 0

Notice that 

L =0 = P
QH,QR,…,QA

1
20
S
TAUVW

X 8A9
=

'(
-

Therefore, 

|'(| ≥ -" and 3 !(
4 ≤ 6 -7 8

9 ∀; ∈ '(



Proof:

T3. Probability of Decoding error

! ℇ ≤ ∑%&'( ) *+% ≤ , -. /
0 , where, ℇ ≜ 3+, 4+ ∈ 6+×8+: :;< 3+, 4+ ≠ 3< and > < @ * .

Define B% = 3+, 4+ ∈ 6+×8+: :;'%.' = 3'%.' & :;% ≠ 3% . Then, ℇ = ∪%∈F B%.

B% = 3+, 4+ ∈ 6+×8+: :;'%.' = 3'%.' GHI ℎ% 4'+, :;'%.' ≠ 3%
= 3+, 4+ ∈ 6+×8+: :;'%.' = 3'%.' GHI ℎ% 4'+, 3'%.' ≠ 3%

⊆ 3+, 4+ ∈ 6+×8+: ℎ% 4'+, 3'%.' ≠ 3% ⊆ ℇ%

where ℇ% = 3+, 4+ ∈ 6+×8+: *+% 4'+, 3'%.' 3%) ≤ *+% 4'+, 3'%.' 3% + 1)
Therefore, 

! ℇ ≤ ! ∪%∈< ℇ% ≤O
%∈<

!(ℇ%)

We now need an upper bound on !(ℇ%).



Proof:

T3. Probability of Decoding error

! ℇ ≤ ∑%&'( ) *+
% ≤ , -. /

0 , where, ℇ ≜ 3+, 4+ ∈ 6+×8+: :;< 3+, 4+ ≠ 3< and > < @ * .

! ℇ% = C
DE,FE

!GE,HE 3+, 4+ I (DE,FE ∈ ℇK} = C
DE,FE

1
2+

*+(4+|3+)I (DE,FE ∈ ℇK}

≤ C
DE,FE

1
2+

*+ 4+ 3+
*+

% 4'+, 3'%.' 3% + 1

*+
% 4'+, 3'%.' 3%

= C
D/KR/,FE

C
DK

1
2

C
DKS/
E

1
2+.'

*+ 4+ 3+
*+

% 4'+, 3'%.' 3% + 1

*+
% 4'+, 3'%.' 3%

=C
DK

1
2

C
D/KR/,FE

*+
% 4'+, 3'%.' 3% *+

% 4'+, 3'%.' 3% + 1 = ) *+
%

Since we know an error has occurred 



Proof:

T3. Probability of Decoding error

! ℇ ≤ ∑%&'( ) *+% ≤ , -. /
0 , where, ℇ ≜ 3+, 4+ ∈ 6+×8+: :;< 3+, 4+ ≠ 3< and > < @ * .

! ℇ% ≤ ) *+%
Hence,

! ℇ ≤B
%∈<

! ℇ% ≤B
%∈<

) *+%

≤ C max ) *+%

≤ -max ) *+%

≤ , -. 'G



Conclusions



Conclusions
• Polar codes can be asymptotically rate achieving codes for B-DMCs.

• For a block length of ! = 2$ and transmission rate % < '()), we see + ),- ~ !/ 0
1, for at least !% channels. 

This gives us a rate at which channels polarize. 

We can get better bounds and tighter bounds than this.

• For a block length of ! = 2$ and transmission rate % < '()), average probability of error goes to zero 
asymptotically, as, 3 45565 ~ !/ 7

1.

This is a loose bound, and we can strengthen the upper bound to an exponential function of !.
The upper bound also does not explicitly depend on %, and one can try to obtain a sharper bound which tells us 
how the error probability degrades with increasing rate.


