Analysis of Channel Polarization

A Theoretical Motivation towards Polar Codes

By Vallabh Ramakanth

Background knowledge

- Probability Theory and Concentration Inequalities
- Information Theory
- Martingale Random Processes

The Original Paper/Reference

Erdal Arıkan, Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels, IEEE Transactions On Information Theory, Vol. 55, No. 7, July 2009

Definitions/Notation

$$
\begin{aligned}
& W: \mathcal{X} \rightarrow \mathcal{Y} \quad W(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y} . \\
& I(W) \triangleq \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} \frac{1}{2} W(y \mid x) \log \frac{W(y \mid x)}{\frac{1}{2} W(y \mid 0)+\frac{1}{2} W(y \mid 1)}
\end{aligned}
$$

$$
Z(W) \triangleq \sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0) W(y \mid 1)} .
$$

$$
W^{N}: \mathcal{X}^{N} \rightarrow \mathcal{Y}^{N}
$$

$$
W^{N}\left(y^{N} \mid x^{N}\right)=\prod_{i=1}^{N} W\left(y_{i} \mid x_{i}\right)
$$

W is a transition probability map or channel.
$I(W)$ is the symmetric capacity of the channel. Here, x is uniformly distributed over $\{0,1\}$. This parameter is strongly tied to the rate of transmission. $0 \leq I(W) \leq 1$.
$Z(W)$ is the Bhattacharya parameter of the channel. It measures the "reliability" of the channel. $0 \leq Z(W) \leq 1$.
W^{N} is the equivalent channel when W is used N times independently.

$$
\begin{aligned}
& y^{N}:=y_{1}^{N}:=\left(y_{1}, y_{2}, \ldots, y_{N}\right), \\
& x^{N}:=x_{1}^{N}:=\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
& x_{a}^{b}:=\left(x_{a}, \ldots, x_{b}\right)
\end{aligned}
$$

Channel Polarization

- Use $W(y \mid x)$ independently N times and artificially manufacture a new set of channels $W_{N}^{(i)}$ which are polarized, i.e., $I\left(W_{N}^{(i)}\right)$ goes to either 0 or $1, \forall i$ asymptotically.

Smart manipulations
Used N times

- Channel polarization can visualized by breaking down the entire operation to two phases

1. Channel Combining
2. Channel Splitting

- For decoding, we look at

3. Successive Cancellation

Channel Polarization

1. Channel Combining:

Consider the following definition of a channel $W_{N}: \mathcal{X}^{N} \rightarrow \mathcal{Y}^{N}, W_{N}\left(y^{N} \mid x^{N}\right)$ by using independent copies of $W(y \mid x)$. $N=2^{k}$.

$$
\begin{gathered}
W_{1}\left(y_{1} \mid u_{1}\right)=W\left(y_{1} \mid u_{1}\right) \\
W_{2}\left(y_{1}, y_{2} \mid u_{1}, u_{2}\right)=W_{1}\left(y_{1} \mid u_{1} \oplus u_{2}\right) W_{1}\left(y_{2} \mid u_{2}\right) \\
W_{4}\left(y_{1}, y_{2}, y_{3}, y_{4} \mid u_{1}, u_{2}, u_{3}, u_{4}\right)=W_{2}\left(y_{2}, y_{1} \mid u_{1} \oplus u_{2}, u_{3} \oplus u_{4}\right) W_{2}\left(y_{3}, y_{4} \mid u_{2}, u_{4}\right)
\end{gathered}
$$

Channel Polarization

1. Channel Combining:

Reverse shuffle operation: Group all odd terms in the first half and all even terms in the second half sequentially.
Recursive Construction of W_{N}

Channel Polarization

2. Channel Splitting:

We now split W_{N} channel into a set of individual single bit input channels $\bar{W}_{N}^{(i)}: \mathcal{X} \rightarrow \mathcal{Y}^{N} \times \mathcal{X}^{i-1}, 1 \leq i \leq N$ defined as

$$
W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right) \triangleq \sum_{u_{i+1}^{N} \in \mathcal{X}^{N-i}} \underbrace{\frac{1}{2^{N-1}} W_{N}\left(y_{1}^{N} \mid u_{1}^{N}\right)}_{\begin{array}{c}
\text { Summed over all } \\
\text { "unknown" bits }
\end{array}}
$$

What we will try to do:
Given $y_{1}, y_{2}, \ldots, y_{N}, u_{1}, u_{2}, \ldots, u_{i-1}$, try estimating u_{i}.
We will prove that this channel is polarized, i.e., its capacity is very close to either 1 or 0 .

Polar codes: Intuition

Transmission with coding
Channel is used N times (N large)

Effect of channel polarization

Decoding

3. Successive Cancellation Decoder

$$
\begin{gathered}
\hat{u}_{i} \triangleq \begin{cases}u_{i}, & \text { if } i \in \mathcal{A}^{c} \\
h_{i}\left(y_{1}^{N}, \hat{u}_{1}^{i-1}\right), & \text { if } i \in \mathcal{A}\end{cases} \\
h_{i}\left(y_{1}^{N}, \hat{u}_{1}^{i-1}\right) \triangleq \begin{cases}0, & \text { if } \frac{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 0\right)}{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 1\right)} \geq 1 \\
1, & \text { otherwise }\end{cases}
\end{gathered}
$$

Proofs

Single step transformation of (W, W) to $\left(W^{\prime}, W^{\prime \prime}\right)$

Definition:

Consider two independent copies of channel W. The following is a single step transformation

$$
(W, W) \mapsto\left(W^{\prime}, W^{\prime \prime}\right)
$$

Iff $\forall u_{1}, u_{2} \in \mathcal{X}, y_{1}, y_{2} \in \mathcal{Y}$

$$
\begin{aligned}
& W^{\prime}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2}^{\prime}} W\left(y_{1} \mid u_{1}+u_{2}^{\prime}\right) W\left(y_{2} \mid u_{2}^{\prime}\right) \\
& W^{\prime \prime}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

From this definition, we see $(W, W) \rightarrow\left(W_{2}^{(1)}, W_{2}^{(2)}\right)$

$$
\begin{equation*}
W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right) \triangleq \sum_{u_{i+1}^{N} \in \mathcal{X}^{N-i}} \frac{1}{2^{N-1}} W_{N}\left(y_{1}^{N} \mid u_{1}^{N}\right) \tag{L1}
\end{equation*}
$$

Can be generalized to $\left(W_{N}^{(i)}, W_{N}^{(i)}\right) \rightarrow\left(W_{2 N}^{(2 i-1)}, W_{2 N}^{(2 i)}\right)$

L1. Recursive Construction of $W_{N}^{(i)}$

$$
\begin{aligned}
& W_{2 N}^{(2 i-1)}\left(y_{1}^{2 N}, u_{1}^{2 i-2} \mid u_{2 i-1}\right) \\
& \quad=\sum_{u_{2 i}} \frac{1}{2} W_{N}^{(i)}\left(y_{1}^{N}, u_{1, o}^{2 i-2} \oplus u_{1, e}^{2 i-2} \mid u_{2 i-1} \oplus u_{2 i}\right) \\
& \cdot W_{N}^{(i)}\left(y_{N+1}^{2 N}, u_{1, e}^{2 i-2} \mid u_{2 i}\right)
\end{aligned}
$$

$$
\begin{array}{r}
W_{2 N}^{(2 i)}\left(y_{1}^{2 N}, u_{1}^{2 i-1} \mid u_{2 i}\right) \\
=\frac{1}{2} W_{N}^{(i)}\left(y_{1}^{N}, u_{1, o}^{2 i-2} \oplus u_{1, e}^{2 i-2} \mid u_{2 i-1} \oplus u_{2 i}\right) \\
\cdot W_{N}^{(i)}\left(y_{N+1}^{2 N}, u_{1, e}^{2 i-2} \mid u_{2 i}\right)
\end{array}
$$

$$
\text { i.e., }\left(W_{N}^{(i)}, W_{N}^{(i)}\right) \rightarrow\left(W_{2 N}^{(2 i-1)}, W_{2 N}^{(2 i)}\right)
$$

L2. Channel Parameters after Single step transforms

```
If \((W, W) \rightarrow\left(W^{\prime}, W^{\prime \prime}\right)\), then
```

$$
\begin{aligned}
I\left(W^{\prime}\right)+I\left(W^{\prime \prime}\right) & =2 I(W) \\
I\left(W^{\prime}\right) & \leq I\left(W^{\prime \prime}\right)
\end{aligned}
$$

Proof:

Let U_{1}, U_{2} be the inputs to the channels. Define $X_{1}=U_{1}+U_{2}$ and $X_{2}=U_{2}$.
We send (X_{1}, X_{2}), linear transformation of input vector $\left(U_{1}, U_{2}\right)$, through the channel W^{2}

```
\(I\left(W^{\prime}\right)=I\left(Y_{1}, Y_{2} ; U_{1}\right)\)
\(I\left(W^{\prime \prime}\right)=I\left(Y_{1}, Y_{2}, U_{1} ; U_{2}\right)=I\left(U_{1} ; U_{2}\right)+I\left(Y_{1}, Y_{2} ; U_{2} \mid U_{1}\right)=I\left(Y_{1}, Y_{2} ; U_{2} \mid U_{1}\right)\)
\(I\left(W^{\prime}\right)+I\left(W^{\prime \prime}\right)=I\left(Y_{1}, Y_{2} ; U_{1}\right)+I\left(Y_{1}, Y_{2} ; U_{2} \mid U_{1}\right)=I\left(Y_{1}, Y_{2} ; U_{1}, U_{2}\right)=I\left(Y_{1}, Y_{2} ; X_{1}, X_{2}\right)\)
\(\therefore, I\left(W^{\prime}\right)+I\left(W^{\prime \prime}\right)=2 I(W)\)
Also, \(I\left(W^{\prime \prime}\right)=I\left(Y_{1}, Y_{2}, U_{1} ; U_{2}\right)=I\left(Y_{2} ; U_{2}\right)+I\left(Y_{1}, U_{1} ; U_{2} \mid Y_{2}\right) \geq I(W)\)
\(\Rightarrow I\left(W^{\prime}\right) \leq I(W)\)
```

$W^{\prime}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2}^{\prime}} W\left(y_{1} \mid u_{1}+u_{2}{ }^{\prime}\right) W\left(y_{2} \mid u_{2}{ }^{\prime}\right)$
$W^{\prime \prime}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right)$

L2. Channel Parameters after Single step transforms

If $(W, W) \rightarrow\left(W^{\prime}, W^{\prime \prime}\right)$, then

$$
\begin{aligned}
Z\left(W^{\prime \prime}\right) & =Z(W)^{2} \\
Z\left(W^{\prime}\right) & \leq 2 Z(W)-Z(W)^{2} \\
Z\left(W^{\prime}\right) & \geq Z(W) \geq Z\left(W^{\prime \prime}\right)
\end{aligned}
$$

Proof: First Equality

$$
\begin{aligned}
& Z\left(W^{\prime \prime}\right)=\sum_{y_{1}, y_{2}, u_{1}} \sqrt{W^{\prime \prime}\left(y_{1}, y_{2}, u_{1} \mid 0\right) W^{\prime \prime}\left(y_{1}, y_{2}, u_{1} \mid 1\right)}=\frac{1}{2} \sum_{y_{1}, y_{2}, u_{1}} \sqrt{W\left(y_{1} \mid u_{1}\right) W\left(y_{2} \mid 0\right) W\left(y_{1} \mid u_{1}+1\right) W\left(y_{2} \mid 1\right)} \\
& =\frac{1}{2} \sum_{y_{1}, u_{1}} \sqrt{W\left(y_{1} \mid u_{1}\right) W\left(y_{1} \mid u_{1}+1\right)} \sum_{y_{2}} \sqrt{W\left(y_{2} \mid 0\right) W\left(y_{2} \mid 1\right)} \\
& =\frac{1}{2} \times(2 Z(W)) \times(Z(W)) \\
& =Z(W)^{2}
\end{aligned}
$$

$$
\therefore Z\left(W^{\prime \prime}\right) \leq Z(W)
$$

Second Equality can be shown to be true with simple algebraic identities. Third inequality can be shown by exploiting the convex property of $Z(W)$ and Minkowski's Inequality.

$$
\begin{aligned}
& W^{\prime}\left(y_{1}, y_{2} \mid u_{1}\right)=\frac{1}{2} \sum_{u_{2}^{\prime}} W\left(y_{1} \mid u_{1}+u_{2}^{\prime}\right) W\left(y_{2} \mid u_{2}^{\prime}\right) \\
& W^{\prime \prime}\left(y_{1}, y_{2}, u_{1} \mid u_{2}\right)=\frac{1}{2} W\left(y_{1} \mid u_{1}+u_{2}\right) W\left(y_{2} \mid u_{2}\right)
\end{aligned}
$$

Summary (Till Now)

$$
\begin{aligned}
& W_{2 N}^{(2 i-1)}\left(y_{1}^{2 N}, u_{1}^{2 i-2} \mid u_{2 i-1}\right) \\
& =\sum_{u_{2 i}} \frac{1}{2} W_{N}^{(i)}\left(y_{1}^{N}, u_{1, o}^{2 i-2} \oplus u_{1, e}^{2 i-2} \mid u_{2 i-1} \oplus u_{2 i}\right) \\
& \cdot W_{N}^{(i)}\left(y_{N+1}^{2 N}, u_{1, e}^{2 i-2} \mid u_{2 i}\right)
\end{aligned}
$$

$$
\begin{array}{r}
W_{2 N}^{(2 i)}\left(y_{1}^{2 N}, u_{1}^{2 i-1} \mid u_{2 i}\right) \\
=\frac{1}{2} W_{N}^{(i)}\left(y_{1}^{N}, u_{1, o}^{2 i-2} \oplus u_{1, e}^{2 i-2} \mid u_{2 i-1} \oplus u_{2 i}\right) \\
\cdot W_{N}^{(i)}\left(y_{N+1}^{2 N}, u_{1, e}^{2 i-2} \mid u_{2 i}\right)
\end{array}
$$

Using L1 and L2, we can summarize
A

$$
\left(W_{N}^{(i)}, W_{N}^{(i)}\right) \rightarrow\left(W_{2 N}^{(2 i-1)}, W_{2 N}^{(2 i)}\right)
$$

$\mathbf{B} \quad\left[\begin{array}{l}I\left(W_{2 N}^{(2 i-1)}\right)+I\left(W_{2 N}^{(2 i)}\right)=2 I\left(W_{N}^{(i)}\right) \\ I\left(W_{2 N}^{(2 i-1)}\right) \leq I\left(W_{N}^{(i)}\right) \leq I\left(W_{2 N}^{(2 i-1)}\right)\end{array}\right.$
C

$$
\begin{gathered}
Z\left(W_{2 N}^{(2 i)}\right)=Z\left(W_{N}^{(i)}\right)^{2} \\
Z\left(W_{2 N}^{(2 i-1)}\right)+Z\left(W_{2 N}^{(2 i)}\right) \leq 2 Z\left(W_{N}^{(i)}\right)
\end{gathered}
$$

T1. Channel Polarization

For any B-DMC W, the channels $\left\{W_{N}^{(i)}\right\}$ polarize, i.e., for any $\delta>0$, as $N=2^{n}$ goes to ∞, a subset of indices $A \subset$ $\{1, \ldots, N\}, i \in A, \mathrm{j} \in A^{c}, I\left(W_{N}^{(i)}\right) \in(1-\delta, 1]$ and $I\left(W_{N}^{(j)}\right) \in[0, \delta)$ with $\frac{|A|}{N}=I(W)$.

Proof:

Define $\left\{b_{n}\right\}_{n \geq 0}$ to be an i.i.d. Bernoulli random process, such that $b_{n}=0$ or 1 with equal probability $\frac{1}{2}$.
Then, $W_{b_{0} b_{1} \ldots b_{n}}$ is a random process defined on the tree in the previous figure, with $W_{0}=W$, the true B-DMC. Moreover, $I_{n} \triangleq I\left(W_{b_{0} b_{1} \ldots b_{n}}\right)$ and $Z_{n} \triangleq Z\left(W_{b_{0} b_{1} \ldots b_{n}}\right)$ are defined random processes.

$$
E\left[I_{n} \mid b^{n-1}\right]=E\left[I\left(W_{b_{0} b_{1} \ldots b_{n}}\right) \mid b^{n-1}\right]=\frac{1}{2} I\left(W_{b_{0} b_{1} \ldots b_{n-1} 0}\right)+\frac{1}{2} I\left(W_{b_{0} b_{1} \ldots b_{n-1} 1}\right)=I\left(W_{b_{0} b_{1} \ldots b_{n-1}}\right)
$$

because $I\left(W_{2 N}^{(2 i-1)}\right)+I\left(W_{2 N}^{(2 i)}\right)=2 I\left(W_{N}^{(i)}\right)$
Hence I_{n} is a bounded martingale process, as $0 \leq I_{n} \leq 1$.
All moments of I_{n} exist!
From Martingale convergence, we have that I_{∞} is a well defined random variable and $E\left|I_{\infty}-I_{n}\right|<\infty$.

T1. Channel Polarization

For any B-DMC W, the channels $\left\{W_{N}^{(i)}\right\}$ polarize, i.e., for any $\delta>0$, as $N=2^{n}$ goes to ∞, a subset of indices $A \subset$ $\{1, \ldots, N\}, i \in A, \mathrm{j} \in A^{c}, I\left(W_{N}^{(i)}\right) \in(1-\delta, 1]$ and $I\left(W_{N}^{(j)}\right) \in[0, \delta)$ with $\frac{|A|}{N}=I(W)$.

Proof:

$$
E\left[Z_{n} \mid b^{n-1}\right]=E\left[Z\left(W_{b_{0} b_{1} \ldots b_{n}}\right) \mid b^{n-1}\right]=\frac{1}{2} Z\left(W_{b_{0} b_{1} \ldots b_{n-1} 0}\right)+\frac{1}{2} Z\left(W_{b_{0} b_{1} \ldots b_{n-1} 1}\right) \leq Z\left(W_{b_{0} b_{1} \ldots b_{n-1}}\right)
$$

because $Z\left(W_{2 N}^{(2 i-1)}\right)+Z\left(W_{2 N}^{(2 i)}\right) \leq 2 Z\left(W_{N}^{(i)}\right)$.
Hence Z_{n} is a bounded supermartingale process, as $0 \leq Z_{n} \leq 1$.
All moments of Z_{n} exist!
From Martingale convergence, we have that Z_{∞} is a well defined random variable and $E\left|Z_{\infty}\right|<\infty$. Since $Z_{n}=\sum_{i=1}^{n}\left(Z_{i}-Z_{i-1}\right)$, and as $E\left|Z_{n}\right|$ converges, we have $E\left|Z_{n+1}-Z_{n}\right| \rightarrow 0$.

But Z_{n+1} is $Z\left(W_{b_{0} b_{1} \ldots b_{n} 0}\right)=Z_{n}^{2}$ with probability $\frac{1}{2}$ because $Z\left(W_{2 N}^{(2 i)}\right)=Z\left(W_{N}^{(i)}\right)^{2}$.
Hence, $E\left|Z_{n+1}-Z_{n}\right| \geq \frac{1}{2} E\left[Z_{n}^{2}-Z_{n}\right]=\frac{1}{2} E\left[Z_{n}\left(1-Z_{n}\right)\right]$.

T1. Channel Polarization

For any B-DMC W, the channels $\left\{W_{N}^{(i)}\right\}$ polarize, i.e., for any $\delta>0$, as $N=2^{n}$ goes to ∞, a subset of indices $A \subset$ $\{1, \ldots, N\}, i \in A, \mathrm{j} \in A^{c}, I\left(W_{N}^{(i)}\right) \in(1-\delta, 1]$ and $I\left(W_{N}^{(j)}\right) \in[0, \delta)$ with $\frac{|A|}{N}=I(W)$.

Proof:
Hence, $E\left|Z_{n+1}-Z_{n}\right| \geq \frac{1}{2} E\left[\left|Z_{n}^{2}-Z_{n}\right|\right]=\frac{1}{2} E\left[\left|Z_{n}\left(1-Z_{n}\right)\right|\right]$.
As $E\left|Z_{n+1}-Z_{n}\right| \rightarrow 0$, we also have $E\left[\left|Z_{n}\left(1-Z_{n}\right)\right|\right] \rightarrow 0$, which implies Z_{n} converges to either 0 or 1 almost surely!
As $Z_{\infty}=0$ or 1 , we have $I_{\infty}=1-Z_{\infty}$. (Can see intuitively that $Z(W)=0$ gives $I(W)=1$ and vice-versa)

The above result is true whenever $Z(W)=0$ or 1 .

$$
Z(W) \triangleq \sum_{y \in \mathcal{Y}} \sqrt{W(y \mid 0) W(y \mid 1)}
$$

But since I_{n} is a martingale, $E\left[I_{\infty}\right]=I_{0}$ which immediately gives us

$$
P\left(I_{\infty}=1\right)=I_{0}=I(W) \text { and } P\left(I_{\infty}=0\right)=1-I_{0}
$$

T2. Channel Polarization

For any B-DMC W, and any fixed rate $R<I(W)$, there exists a sequence of sets $A_{N} \subseteq\{1, \ldots, N\}, N=2^{n}$ such that $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}$.

Proof:

From the same setting as earlier, we have

$$
\left\{\begin{aligned}
Z_{n+1} \leq Z_{n}^{2}, & b_{n}=1\left[\text { as } Z\left(W_{2 N}^{(2 i)}\right)=Z\left(W_{N}^{(i)}\right)^{2}\right] \\
Z_{n+1} \leq 2 Z_{n}-Z_{n}^{2} \leq 2 Z_{n}, & b_{n}=0\left[\text { as } Z\left(W_{2 N}^{(2 i-1)}\right) \leq 2 Z\left(W_{N}^{(i)}\right)-Z\left(W_{N}^{(i)}\right)^{2}\right]
\end{aligned}\right.
$$

For parameters $2 \geq \zeta \geq 0, m \geq 0$

$$
T_{m}(\zeta) \triangleq\left\{\omega \in \Omega ; Z_{i} \leq \zeta, \forall i \geq m\right\}
$$

Then for $\omega \in T_{m}(\zeta)$ and $i \geq m$, we have

$$
\frac{Z_{i+1}}{Z_{i}} \leq \begin{cases}2, & b_{n}=0 \\ \zeta, & b_{n}=1\end{cases}
$$

This implies $Z_{n} \leq \zeta 2^{n-m} \prod_{i=m+1}^{n}\left(\frac{\zeta}{2}\right)^{b_{i}}=\zeta 2^{n-m}\left(\frac{\zeta}{2}\right)^{\sum_{i=m+1}^{n} b_{i}}$ for $n>m$

T2. Channel Polarization

For any B-DMC W, and any fixed rate $R<I(W)$, there exists a sequence of sets $A_{N} \subseteq\{1, \ldots, N\}, N=2^{n}$ such that $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}$.

Proof:

For $n>m \geq 0$ and $0<\eta<1 / 2$, define,

$$
U_{m, n}(\eta) \triangleq\left\{\omega \in \Omega: \sum_{i=m+1}^{n} b_{i} \geq\left(\frac{1}{2}-\eta\right)(n-m)\right\}
$$

Then

$$
Z_{n}(\omega) \leq \zeta\left[2^{\frac{1}{2}+\eta} \zeta^{\frac{1}{2}-\eta}\right]^{n-m}, \quad \omega \in T_{m}(\zeta) \cap U_{m, n}(\eta)
$$

Substitute $\eta_{0}=1 / 20$ and $\zeta_{0}=2^{-4}$ to get

$$
Z_{n}(\omega) \leq 2^{-4-\frac{5(n-m)}{4}}, \quad \omega \in T_{m}\left(\zeta_{0}\right) \cap U_{m, n}\left(\eta_{0}\right)
$$

We need to show that for a given $m, n, T_{m}\left(\zeta_{0}\right) \cap U_{m, n}\left(\eta_{0}\right)$ occurs with high probability.

T2. Channel Polarization

For any B-DMC W, and any fixed rate $R<I(W)$, there exists a sequence of sets $A_{N} \subseteq\{1, \ldots, N\}, N=2^{n}$ such that $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}$.

Proof:

First consider $T_{m}\left(\zeta_{0}\right)$.
As seen from T1, $P\left(Z_{\infty}=0\right)=I_{0}$, which implies that $S_{n}:=\left\{Z_{n} \leq \zeta_{0}\right\},\left\{Z_{\infty}=0\right\} \subseteq U_{n \geq m} S_{n}$ for large enough m, and hence $P\left(\cup_{n \geq m} S_{n}\right) \geq I_{0}-\frac{\delta}{2}$.
$T_{m_{0}}\left(\zeta_{0}\right)=U_{n \geq m_{0}} S_{n}$, and from continuity of probability,

$$
P\left(T_{m_{0}}\left(\zeta_{0}\right)\right)=P\left(\cup_{n \geq m_{0}} S_{n}\right) \geq I_{0}-\frac{\delta}{2}, \quad m_{0}=m_{0}\left(\zeta_{0}, \delta\right)
$$

Now consider $U_{m, n}(\eta)$.

$$
\begin{gathered}
P\left(U_{m, n}^{c}\left(\eta_{0}\right)\right)=P\left(\sum_{i=m+1}^{n} b_{i}<\left(\frac{1}{2}-\eta_{0}\right)(n-m)\right)=P\left(-t \sum_{i=m+1}^{n} b_{i}>-t\left(\frac{1}{2}-\eta_{0}\right)(n-m)\right) \\
\leq 2^{t\left(\frac{1}{2}-\eta_{0}\right)(n-m)} E\left[2^{-t b_{i}}\right]^{n-m}=\left[\left(\frac{2^{t\left(\frac{1}{2}-\eta_{0}\right)}+2^{-t\left(\frac{1}{2}+\eta_{0}\right)}}{2}\right)\right]^{n-m} \quad \text { Chernoff Bound } \\
P\left(U_{m, n}^{c}\left(\eta_{0}\right)\right) \leq 2^{-(n-m)\left(1-H\left(\frac{1}{2}-\eta_{0}\right)\right)}
\end{gathered}
$$

T2. Channel Polarization

For any B-DMC W, and any fixed rate $R<I(W)$, there exists a sequence of sets $A_{N} \subseteq\{1, \ldots, N\}, N=2^{n}$ such that $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}$.

Proof:

$$
\begin{gathered}
P\left(T_{m_{0}}^{c}\left(\zeta_{0}\right)\right) \leq 1-I_{0}+\frac{\delta}{2}, \quad m_{0}=m_{0}\left(\zeta_{0}, \delta\right) \\
P\left(U_{m, n}^{c}\left(\eta_{0}\right)\right) \leq 2^{-(n-m)\left(1-H\left(\frac{1}{2}-\eta_{0}\right)\right)}
\end{gathered}
$$

We can choose a finite $n_{0}\left(m_{0}, \eta_{0}, \delta\right)$ such that the RHS of the above inequality becomes at most $\frac{\delta}{2}$. Hence, from union bound, $\forall n>n_{0}$

$$
\begin{aligned}
& P\left(T_{m_{0}}^{c}\left(\zeta_{0}\right) \cup U_{m_{0}, n}^{c}\left(\eta_{0}\right)\right) \leq 1-I_{0}+\delta \\
& P\left(T_{m_{0}}\left(\zeta_{0}\right) \cap U_{m_{0}, n}\left(\eta_{0}\right)\right) \geq I_{0}-\delta
\end{aligned}
$$

Therefore

$$
Z_{n}(\omega) \leq 2^{-4-\frac{5\left(n-m_{0}\right)}{4}}=c 2^{-\frac{5 n}{4}}, \quad \omega \in T_{m_{0}}\left(\zeta_{0}\right) \cap U_{m_{0}, n}\left(\eta_{0}\right), \forall n>n_{0}
$$

T2. Channel Polarization

For any B-DMC W, and any fixed rate $R<I(W)$, there exists a sequence of sets $A_{N} \subseteq\{1, \ldots, N\}, N=2^{n}$ such that $\left|A_{N}\right| \geq N R$ and $Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}$.

Proof:

Define $V_{n}=\left\{\omega: Z_{n} \leq c 2^{-\frac{5 n}{4}}\right\}$, then immediately $T_{m_{0}}\left(\zeta_{0}\right) \cap U_{m_{0}, n}\left(\eta_{0}\right) \subseteq V_{n} \forall n>n_{0}$

$$
P\left(V_{n}\right) \geq I-\delta=R \forall n>0
$$

Notice that

$$
P\left(V_{n}\right)=\sum_{b_{0}, b_{1}, \ldots, b_{n}} \frac{1}{2^{n}} \mathbf{1}_{\left\{z_{n} \leq c 2^{\left.-\frac{5 n}{4}\right\}}\right.}=\frac{\left|A_{N}\right|}{N}
$$

Therefore,

$$
\left|A_{N}\right| \geq N R \text { and } Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{5}{4}}\right) \forall i \in A_{N}
$$

T3. Probability of Decoding error

$$
\begin{aligned}
& \hat{u}_{i} \triangleq\left\{\begin{array} { l l }
{ u _ { i } , } & { \text { if } i \in \mathcal { A } ^ { c } } \\
{ h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) , } & { \text { if } i \in \mathcal { A } }
\end{array} \quad h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) \triangleq \left\{\begin{array}{ll}
0, & \text { if } \frac{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 0\right)}{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 1\right)} \geq 1 \\
1, & \text { otherwise }
\end{array}\right.\right. \\
& P(\varepsilon) \leq \sum_{i=1}^{n} Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{1}{4}}\right), \text { where, } \varepsilon \triangleq\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times \mathcal{Y}^{N}: \widehat{U}_{A}\left(u^{N}, y^{N}\right) \neq u_{A}\right\} \text { and } R<I(W) .
\end{aligned}
$$

Proof:

Define $B_{i}=\left\{\left(u^{N}, y^{N}\right) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}: \widehat{U}_{1}^{i-1}=u_{1}^{i-1} \& \widehat{U}_{i} \neq u_{i}\right\}$. Then, $\varepsilon=\cup_{i \in \mathrm{~A}} B_{i}$.

$$
\begin{gathered}
B_{i}=\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times \mathcal{Y}^{N}: \widehat{U}_{1}^{i-1}=u_{1}^{i-1} \text { and } h_{i}\left(y_{1}^{N}, \widehat{U}_{1}^{i-1}\right) \neq u_{i}\right\} \\
=\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times \mathcal{Y}^{N}: \widehat{U}_{1}^{i-1}=u_{1}^{i-1} \text { and } h_{i}\left(y_{1}^{N}, u_{1}^{i-1}\right) \neq u_{i}\right\} \\
\subseteq\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times \mathcal{Y}^{N}: h_{i}\left(y_{1}^{N}, u_{1}^{i-1}\right) \neq u_{i}\right\} \subseteq \varepsilon_{i}
\end{gathered}
$$

where $\varepsilon_{i}=\left\{\left(u^{N}, y^{N}\right) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}: W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right) \leq W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}+1\right)\right\}$
Therefore,

$$
P(\varepsilon) \leq P\left(\cup_{i \in A} \varepsilon_{i}\right) \leq \sum_{i \in A} P\left(\varepsilon_{i}\right)
$$

We now need an upper bound on $P\left(\varepsilon_{i}\right)$.

T3. Probability of Decoding error

$$
\begin{aligned}
\hat{u}_{i} \triangleq & \left\{\begin{array} { l l }
{ u _ { i } , } & { \text { if } i \in \mathcal { A } ^ { c } } \\
{ h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) , } & { \text { if } i \in \mathcal { A } }
\end{array} \quad h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) \triangleq \left\{\begin{array}{ll}
0, & \text { if } \frac{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{i}^{i-1} \mid 0\right)}{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 1\right)} \geq 1 \\
1, & \text { otherwise }
\end{array}\right.\right. \\
& P(\varepsilon) \leq \sum_{i=1}^{n} Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{1}{4}}\right), \text { where, } \varepsilon \triangleq\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times y^{N}: \widehat{U}_{A}\left(u^{N}, y^{N}\right) \neq u_{A}\right\} \text { and } R<I(W) .
\end{aligned}
$$

Proof:

$$
\begin{aligned}
P\left(\varepsilon_{i}\right)= & \sum_{u^{N}, y^{N}} P_{U^{N}, Y^{N}}\left(u^{N}, y^{N}\right) \mathbf{1}_{\left\{\left(u^{N}, y^{N}\right) \in \varepsilon_{i}\right\}}=\sum_{u^{N}, y^{N}} \frac{1}{2^{N}} W_{N}\left(y^{N} \mid u^{N}\right) \mathbf{1}_{\left\{\left(u^{N}, y^{N}\right) \in \varepsilon_{i}\right\}} \\
& \leq \sum_{u^{N}, y^{N}} \frac{1}{2^{N}} W_{N}\left(y^{N} \mid u^{N}\right) \sqrt{\frac{W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}+1\right)}{W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right)}} \quad \text { Since we know an error has occurred } \\
= & \sum_{u_{1}^{i-1}, y^{N}} \sum_{u_{i}} \frac{1}{2}\left(\sum_{u_{i+1}^{N}} \frac{1}{2^{N-1}} W_{N}\left(y^{N} \mid u^{N}\right)\right) \sqrt{\frac{W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}+1\right)}{W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right)}} \\
= & \sum_{u_{i}} \frac{1}{2} \sum_{u_{1}^{i-1}, y^{N}} \sqrt{W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}\right) W_{N}^{(i)}\left(y_{1}^{N}, u_{1}^{i-1} \mid u_{i}+1\right)}=Z\left(W_{N}^{(i)}\right)
\end{aligned}
$$

T3. Probability of Decoding error

$$
\begin{aligned}
& \hat{u}_{i} \triangleq\left\{\begin{array} { l l }
{ u _ { i } , } & { \text { if } i \in \mathcal { A } ^ { c } } \\
{ h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) , } & { \text { if } i \in \mathcal { A } }
\end{array} \quad h _ { i } (y _ { 1 } ^ { N } , \hat { u } _ { 1 } ^ { i - 1 }) \triangleq \left\{\begin{array}{ll}
0, & \text { if } \frac{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 0\right)}{W_{N}^{(i)}\left(y_{1}^{N}, \hat{u}_{1}^{i-1} \mid 1\right)} \geq 1 \\
1, & \text { otherwise }
\end{array}\right.\right. \\
& P(\varepsilon) \leq \sum_{i=1}^{n} Z\left(W_{N}^{(i)}\right) \leq O\left(N^{-\frac{1}{4}}\right), \text { where, } \varepsilon \triangleq\left\{\left(u^{N}, y^{N}\right) \in X^{N} \times \mathcal{Y}^{N}: \widehat{U}_{A}\left(u^{N}, y^{N}\right) \neq u_{A}\right\} \text { and } R<I(W) .
\end{aligned}
$$

Proof:

$$
P\left(\varepsilon_{i}\right) \leq Z\left(W_{N}^{(i)}\right)
$$

Hence,

$$
\begin{gathered}
P(\varepsilon) \leq \sum_{i \in A} P\left(\varepsilon_{i}\right) \leq \sum_{i \in A} Z\left(W_{N}^{(i)}\right) \\
\leq|A| \max \left(Z\left(W_{N}^{(i)}\right)\right) \\
\leq N \max \left(Z\left(W_{N}^{(i)}\right)\right) \\
\leq O\left(N^{-\frac{1}{4}}\right)
\end{gathered}
$$

Conclusions

Conclusions

- Polar codes can be asymptotically rate achieving codes for B-DMCs.
- For a block length of $N=2^{n}$ and transmission rate $R<I(W)$, we see $Z\left(W_{N}^{(i)}\right) \sim N^{-\frac{5}{4}}$, for at least $N R$ channels. This gives us a rate at which channels polarize.

We can get better bounds and tighter bounds than this.

- For a block length of $N=2^{n}$ and transmission rate $R<I(W)$, average probability of error goes to zero asymptotically, as, $P($ error $) \sim N^{-\frac{1}{4}}$.

This is a loose bound, and we can strengthen the upper bound to an exponential function of N.
The upper bound also does not explicitly depend on R, and one can try to obtain a sharper bound which tells us how the error probability degrades with increasing rate.

